MATHEMATICS
MFP3
Unit Further Pure 3
Friday 25 January 20081.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=x^{2}-y^{2}
$$

and

$$
y(2)=1
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.1$, to obtain an approximation to $y(2.1)$.
(b) Use the formula

$$
y_{r+1}=y_{r-1}+2 h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with your answer to part (a), to obtain an approximation to $y(2.2)$.

2 The diagram shows a sketch of part of the curve C whose polar equation is $r=1+\tan \theta$. The point O is the pole.

The points P and Q on the curve are given by $\theta=0$ and $\theta=\frac{\pi}{3}$ respectively.
(a) Show that the area of the region bounded by the curve C and the lines $O P$ and $O Q$ is

$$
\frac{1}{2} \sqrt{3}+\ln 2
$$

(b) Hence find the area of the shaded region bounded by the line $P Q$ and the arc $P Q$ of C.
(3 marks)

3 (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=5 \tag{6marks}
\end{equation*}
$$

(b) Hence express y in terms of x, given that $y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ when $x=0 . \quad$ (4 marks)

4 (a) Explain why $\int_{1}^{\infty} x \mathrm{e}^{-3 x} \mathrm{~d} x$ is an improper integral.
(b) Find $\int x \mathrm{e}^{-3 x} \mathrm{~d} x$.
(c) Hence evaluate $\int_{1}^{\infty} x \mathrm{e}^{-3 x} \mathrm{~d} x$, showing the limiting process used.

5 By using an integrating factor, find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{4 x}{x^{2}+1} y=x
$$

given that $y=1$ when $x=0$. Give your answer in the form $y=\mathrm{f}(x)$.
(9 marks)

6 A curve C has polar equation

$$
r^{2} \sin 2 \theta=8
$$

(a) Find the cartesian equation of C in the form $y=\mathrm{f}(x)$.
(b) Sketch the curve C.
(c) The line with polar equation $r=2 \sec \theta$ intersects C at the point A. Find the polar coordinates of A.

7 (a) (i) Write down the expansion of $\ln (1+2 x)$ in ascending powers of x up to and including the term in x^{3}.
(ii) State the range of values of x for which this expansion is valid.
(b) (i) Given that $y=\ln \cos x$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ and $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$.
(ii) Find the value of $\frac{\mathrm{d}^{4} y}{\mathrm{~d} x^{4}}$ when $x=0$.
(iii) Hence, by using Maclaurin's theorem, show that the first two non-zero terms in the expansion, in ascending powers of x, of $\ln \cos x$ are

$$
\begin{equation*}
-\frac{x^{2}}{2}-\frac{x^{4}}{12} \tag{2marks}
\end{equation*}
$$

(c) Find

$$
\lim _{x \rightarrow 0}\left[\frac{x \ln (1+2 x)}{x^{2}-\ln \cos x}\right]
$$

8 (a) Given that $x=\mathrm{e}^{t}$ and that y is a function of x, show that:
(i) $x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t}$;
(3 marks)
(ii) $x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} t}$. (3 marks)
(b) Hence find the general solution of the differential equation

$$
\begin{equation*}
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-6 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+6 y=0 \tag{5marks}
\end{equation*}
$$

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

